When we first get a longitudinal dataset, you need to understand some of its structure. This vignette demonstrates part of the process of understanding your new longitudinal data.
To use brolgar
with your work, you should convert your
longitudinal data into a time series tsibble
using the
tsibble
package. To do so, you need to identify the unique
identifying key
, and time index
. For
example:
To learn more about longitudinal data as time series, see the vignette: Longitudinal Data Structures.
When you first get a dataset, you need to get an overall sense of what is in the data.
We can kind the number of keys using n_keys()
:
Note that this is a single number, in this case, we have 888 observations.
However, we might want to know how many observations we have for each
individual. If we want the number of observations in each variable, then
we can use n_obs()
with features()
.
wages %>%
features(ln_wages, n_obs)
#> # A tibble: 888 × 2
#> id n_obs
#> <int> <int>
#> 1 31 8
#> 2 36 10
#> 3 53 8
#> 4 122 10
#> 5 134 12
#> 6 145 9
#> 7 155 11
#> 8 173 6
#> 9 206 3
#> 10 207 11
#> # ℹ 878 more rows
A plot of this can help provide better understanding of the distribution of observations.
add_n_obs()
You can add information about the number of observations for each key
with add_n_obs()
:
wages %>% add_n_obs()
#> # A tsibble: 6,402 x 10 [!]
#> # Key: id [888]
#> id xp n_obs ln_wages ged xp_since_ged black hispanic high_grade
#> <int> <dbl> <int> <dbl> <int> <dbl> <int> <int> <int>
#> 1 31 0.015 8 1.49 1 0.015 0 1 8
#> 2 31 0.715 8 1.43 1 0.715 0 1 8
#> 3 31 1.73 8 1.47 1 1.73 0 1 8
#> 4 31 2.77 8 1.75 1 2.77 0 1 8
#> 5 31 3.93 8 1.93 1 3.93 0 1 8
#> 6 31 4.95 8 1.71 1 4.95 0 1 8
#> 7 31 5.96 8 2.09 1 5.96 0 1 8
#> 8 31 6.98 8 2.13 1 6.98 0 1 8
#> 9 36 0.315 10 1.98 1 0.315 0 0 9
#> 10 36 0.983 10 1.80 1 0.983 0 0 9
#> # ℹ 6,392 more rows
#> # ℹ 1 more variable: unemploy_rate <dbl>
Which you can then use to filter()
observations:
library(dplyr)
wages %>%
add_n_obs() %>%
filter(n_obs > 3)
#> # A tsibble: 6,145 x 10 [!]
#> # Key: id [764]
#> id xp n_obs ln_wages ged xp_since_ged black hispanic high_grade
#> <int> <dbl> <int> <dbl> <int> <dbl> <int> <int> <int>
#> 1 31 0.015 8 1.49 1 0.015 0 1 8
#> 2 31 0.715 8 1.43 1 0.715 0 1 8
#> 3 31 1.73 8 1.47 1 1.73 0 1 8
#> 4 31 2.77 8 1.75 1 2.77 0 1 8
#> 5 31 3.93 8 1.93 1 3.93 0 1 8
#> 6 31 4.95 8 1.71 1 4.95 0 1 8
#> 7 31 5.96 8 2.09 1 5.96 0 1 8
#> 8 31 6.98 8 2.13 1 6.98 0 1 8
#> 9 36 0.315 10 1.98 1 0.315 0 0 9
#> 10 36 0.983 10 1.80 1 0.983 0 0 9
#> # ℹ 6,135 more rows
#> # ℹ 1 more variable: unemploy_rate <dbl>
We can also look at the distance between experience, to understand what the distribution of experience is
wages_xp_range <- wages %>%
features(xp,
feat_ranges)
ggplot(wages_xp_range,
aes(x = range_diff)) +
geom_histogram()
We can then explore the range of experience to see what the most common experience is
wages_xp_range %>%
count(range_diff) %>%
mutate(prop = n / sum(n))
#> # A tibble: 829 × 3
#> range_diff n prop
#> <dbl> <int> <dbl>
#> 1 0 38 0.0428
#> 2 0.0150 1 0.00113
#> 3 0.068 1 0.00113
#> 4 0.137 1 0.00113
#> 5 0.153 1 0.00113
#> 6 0.185 1 0.00113
#> 7 0.22 1 0.00113
#> 8 0.225 1 0.00113
#> 9 0.231 1 0.00113
#> 10 0.26 1 0.00113
#> # ℹ 819 more rows
To avoid staring at a plate of spaghetti, you can look at a random subset of the data. Brolgar provides some intuitive functions to help with this.
You can combine sample_n_keys()
with
add_n_obs()
and filter()
to only show keys
with many observations:
library(dplyr)
wages %>%
add_n_obs() %>%
filter(n_obs > 5) %>%
sample_n_keys(size = 10) %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line()
(Note: sample_frac_keys()
, which samples a fraction of
available keys.)
Now, how do you break these into many plots?
facet_strata
brolgar
provides some clever facets to help make it
easier to explore your data. facet_strata()
splits the data
into 12 groups by default:
set.seed(2019-07-23-1936)
library(ggplot2)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_strata()
But you could ask it to split the data into a more groups