
Package: geotargets (via r-universe)
September 4, 2024

Title 'Targets' Extensions for Geospatial Formats

Version 0.1.0.9000

Description Provides extensions for various geospatial file formats,
such as shapefiles and rasters. Currently provides support for
the 'terra' geospatial formats. See the vignettes for worked
examples, demonstrations, and explanations of how to use the
various package extensions.

License MIT + file LICENSE

Encoding UTF-8

Language en-GB

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Imports targets (>= 1.7.0), rlang (>= 1.1.3), cli (>= 3.6.2)

Suggests crew (>= 0.9.2), ncmeta, sf, stars, terra (>= 1.7.71),
testthat (>= 3.0.0), withr (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/njtierney/geotargets,

https://njtierney.github.io/geotargets/

BugReports https://github.com/njtierney/geotargets/issues

Repository https://njtierney.r-universe.dev

RemoteUrl https://github.com/njtierney/geotargets

RemoteRef HEAD

RemoteSha fa9db96a88ba8064765ba19aa3468e1aef68448b

Contents
geotargets_option_set . 2
set_window . 3
tar_stars . 4

1

https://github.com/njtierney/geotargets
https://njtierney.github.io/geotargets/
https://github.com/njtierney/geotargets/issues

2 geotargets_option_set

tar_terra_rast . 8
tar_terra_sprc . 12
tar_terra_tiles . 16
tar_terra_vect . 20
tile_grid . 24

Index 26

geotargets_option_set Get or Set geotargets Options

Description

Get or set behavior for geospatial data target stores using geotargets-specific global options.

Usage

geotargets_option_set(
gdal_raster_driver = NULL,
gdal_raster_creation_options = NULL,
gdal_vector_driver = NULL,
gdal_vector_creation_options = NULL

)

geotargets_option_get(name)

Arguments

gdal_raster_driver

character, length 1; set the driver used for raster data in target store (default:
"GTiff"). Options for driver names can be found here: https://gdal.org/
drivers/raster/index.html

gdal_raster_creation_options

character; set the GDAL creation options used when writing raster files to target
store (default: ""). You may specify multiple values e.g. c("COMPRESS=DEFLATE",
"TFW=YES"). Each GDAL driver supports a unique set of creation options.
For example, with the default "GTiff" driver: https://gdal.org/drivers/
raster/gtiff.html#creation-options

gdal_vector_driver

character, length 1; set the file type used for vector data in target store (default:
"GeoJSON").

gdal_vector_creation_options

character; set the GDAL layer creation options used when writing vector files
to target store (default: "ENCODING=UTF-8"). You may specify multiple val-
ues e.g. c("WRITE_BBOX=YES", "COORDINATE_PRECISION=10"). Each GDAL
driver supports a unique set of creation options. For example, with the default
"GeoJSON" driver: https://gdal.org/drivers/vector/geojson.html#layer-creation-options

name character; option name to get.

https://gdal.org/drivers/raster/index.html
https://gdal.org/drivers/raster/index.html
https://gdal.org/drivers/raster/gtiff.html#creation-options
https://gdal.org/drivers/raster/gtiff.html#creation-options
https://gdal.org/drivers/vector/geojson.html#layer-creation-options

set_window 3

Details

These options can also be set using options(). For example, geotargets_options_set(gdal_raster_driver
= "GTiff") is equivalent to options("geotargets.gdal.raster.driver" = "GTiff").

Value

Specific options, such as "gdal.raster.driver". See "Details" for more information.

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
library(geotargets)
op <- getOption("geotargets.gdal.raster.driver")
withr::defer(options("geotargets.gdal.raster.driver" = op))
geotargets_option_set(gdal_raster_driver = "COG")
targets::tar_script({

list(
geotargets::tar_terra_rast(

terra_rast_example,
system.file("ex/elev.tif", package = "terra") |> terra::rast()

)
)

})
targets::tar_make()
x <- targets::tar_read(terra_rast_example)

})
}

geotargets_option_get("gdal.raster.driver")
geotargets_option_get("gdal.raster.creation.options")

set_window Copy a raster within a window

Description

Create a new SpatRaster object as specified by a window (area of interest) over the original Spa-
tRaster. This is a wrapper around terra::window() which, rather than modifying the SpatRaster
in place, returns a new SpatRaster leaving the original unchanged.

Usage

set_window(raster, window)

Arguments

raster a SpatRaster object

window a SpatExtent object defining the area of interest

4 tar_stars

Note

While this may have general use, it was created primarily for use within tar_terra_tiles().

Author(s)

Eric Scott

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- terra::rast(f)
e <- terra::ext(c(5.9, 6,49.95, 50))
r2 <- set_window(r, e)
terra::ext(r)
terra::ext(r2)

tar_stars Create a stars stars Target

Description

Provides a target format for stars objects.

Usage

tar_stars(
name,
command,
pattern = NULL,
proxy = FALSE,
mdim = FALSE,
ncdf = FALSE,
driver = geotargets_option_get("gdal.raster.driver"),
options = geotargets_option_get("gdal.raster.creation.options"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),

tar_stars 5

retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

tar_stars_proxy(
name,
command,
pattern = NULL,
mdim = FALSE,
ncdf = FALSE,
driver = geotargets_option_get("gdal.raster.driver"),
options = geotargets_option_get("gdal.raster.creation.options"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

command R code to run the target.

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and

6 tar_stars

so on. See the user manual for details.

proxy logical. Passed to stars::read_stars(). If TRUE the target will be read as an
object of class stars_proxy. Otherwise, the object is class stars.

mdim logical. Use the Multidimensional Raster Data Model via stars::write_mdim()?
Default: FALSE. Only supported for some drivers, e.g. "netCDF" or "Zarr".

ncdf logical. Use the NetCDF library directly to read data via stars::read_ncdf()?
Default: FALSE. Only supported for driver="netCDF".

driver character. File format expressed as GDAL driver names passed to stars::write_stars().
See sf::st_drivers().

options character. GDAL driver specific datasource creation options passed to stars::write_stars()

... Additional arguments not yet used

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case

https://gdal.org/user/multidim_raster_data_model.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_stars 7

targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the targets dependencies.

https://books.ropensci.org/targets/crew.html

8 tar_terra_rast

• "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

See Also

targets::tar_target_raw()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.

library(geotargets)
targets::tar_script({

list(
geotargets::tar_stars(

stars_example,
stars::read_stars(system.file("tif", "olinda_dem_utm25s.tif", package = "stars"))
)

)
})
targets::tar_make()
x <- targets::tar_read(stars_example)

})
}

tar_terra_rast Create a terra SpatRaster target

Description

Provides a target format for terra::SpatRaster objects.

tar_terra_rast 9

Usage

tar_terra_rast(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

command R code to run the target.

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

filetype character. File format expressed as GDAL driver names passed to terra::writeRaster()

gdal character. GDAL driver specific datasource creation options passed to terra::writeRaster()

... Additional arguments not yet used

10 tar_terra_rast

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_terra_rast 11

set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Value

target class "tar_stem" for use in a target pipeline

https://books.ropensci.org/targets/crew.html

12 tar_terra_sprc

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

See Also

targets::tar_target_raw()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
library(geotargets)
targets::tar_script({

list(
geotargets::tar_terra_rast(

terra_rast_example,
system.file("ex/elev.tif", package = "terra") |> terra::rast()

)
)

})
targets::tar_make()
x <- targets::tar_read(terra_rast_example)

})
}

tar_terra_sprc Create a terra SpatRasterCollection target

Description

Provides a target format for terra::SpatRasterCollection objects, which have no restriction in the
extent or other geometric parameters.

Usage

tar_terra_sprc(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),

tar_terra_sprc 13

memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

command R code to run the target.
pattern Language to define branching for a target. For example, in a pipeline with nu-

meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

filetype character. File format expressed as GDAL driver names passed to terra::writeRaster()

gdal character. GDAL driver specific datasource creation options passed to terra::writeRaster()

... Additional arguments not yet used
tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.

If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.
repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://books.ropensci.org/targets/data.html

14 tar_terra_sprc

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_terra_sprc 15

• "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

Author(s)

Andrew Gene Brown

Nicholas Tierney

See Also

targets::tar_target_raw()

16 tar_terra_tiles

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
library(geotargets)
targets::tar_script({

elev_scale <- function(z = 1, projection = "EPSG:4326") {
terra::project(

terra::rast(system.file("ex", "elev.tif", package = "terra")) * z,
projection

)
}
list(

tar_terra_sprc(
raster_elevs,
two rasters, one unaltered, one scaled by factor of 2 and
reprojected to interrupted good homolosine
command = terra::sprc(list(

elev_scale(1),
elev_scale(2, "+proj=igh")

))
)

)
})
targets::tar_make()
x <- targets::tar_read(raster_elevs)

})
}

tar_terra_tiles Split a raster into tiles that can be iterated over with dynamic branch-
ing

Description

This target factory is useful when a raster is too large or too high resolution to work on in-memory.
It can instead be split into tiles that can be iterated over, potentially using parallel workers.

Usage

tar_terra_tiles(
name,
raster,
tile_fun,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
...,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),

tar_terra_tiles 17

error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

raster a SpatRaster object to be split into tiles

tile_fun a helper function that returns a list of numeric vectors such as tile_grid or
tile_blocksize specified in one of the following ways:

• A named function, e.g. tile_blocksize or "tile_blocksize"
• An anonymous function, e.g. \(x) tile_grid(x, nrow = 2, ncol = 2)

filetype character. File format expressed as GDAL driver names passed to terra::makeTiles()

gdal character. GDAL driver specific datasource creation options passed to terra::makeTiles()

... additional arguments not yet used

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://books.ropensci.org/targets/data.html

18 tar_terra_tiles

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_terra_tiles 19

• "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Value

a list of two targets: an upstream target that creates a list of extents and a downstream pattern that
maps over these extents to create a list of SpatRaster objects.

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

Author(s)

Eric Scott

See Also

tile_grid(), tile_blocksize(), tar_terra_rast()

20 tar_terra_vect

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({
targets::tar_script({

library(targets)
library(geotargets)
library(terra)
list(

tar_target(
my_file,
system.file("ex/elev.tif", package="terra"),
format = "file"

),
tar_terra_rast(

my_map,
terra::rast(my_file)

),
tar_terra_tiles(

name = rast_split,
raster = my_map,
ncol = 2,
nrow = 2

)
)

})
targets::tar_manifest()

})
}

tar_terra_vect Create a terra SpatVector target

Description

Provides a target format for terra::SpatVector objects.

Usage

tar_terra_vect(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.vector.driver"),
gdal = geotargets_option_get("gdal.vector.creation.options"),
...,
packages = targets::tar_option_get("packages"),
tidy_eval = targets::tar_option_get("tidy_eval"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),

tar_terra_vect 21

error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

command R code to run the target.

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

filetype character. File format expressed as GDAL driver names passed to terra::writeVector().
See ’Note’ for more details

gdal character. GDAL driver specific datasource creation options passed to terra::writeVector().

... Additional arguments not yet used

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.

22 tar_terra_vect

• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_terra_vect 23

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

Although you may pass any supported GDAL vector driver to the filetype argument, not all
formats are guaranteed to work with geotargets. At the moment, we have tested GeoJSON and
ESRI Shapefile which both appear to work generally.

24 tile_grid

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

lux_area <- function(projection = "EPSG:4326") {
terra::project(

terra::vect(system.file("ex", "lux.shp",
package = "terra"

)),
projection

)
}
list(

geotargets::tar_terra_vect(
terra_vect_example,
lux_area()

)
)

})
targets::tar_make()
x <- targets::tar_read(terra_vect_example)

})
}

tile_grid Helper functions to create tiles

Description

Wrappers around terra::getTileExtents() that return a list of named numeric vectors describ-
ing the extents of tiles rather than SpatExtent objects. While these may have general use, they are
intended primarily for supplying to the tile_fun argument of tar_terra_tiles().

Usage

tile_grid(raster, ncol, nrow)

tile_blocksize(raster)

Arguments

raster a SpatRaster object

ncol integer; number of columns to split the SpatRaster into

nrow integer; number of rows to split the SpatRaster into

tile_grid 25

Details

tile_blocksize() creates extents using the raster’s native blocksize (see terra::fileBlocksize()),
which should be more memory efficient. tile_grid() allows specification of a number of rows
and columns to split the raster into. E.g. nrow = 2 and ncol = 2 would create 4 tiles (because it
specifies a 2x2 matrix, which has 4 elements).

Value

list of named numeric vectors with xmin, xmax, ymin, and ymax values that can be coerced to
SpatExtent objects with terra::ext().

Author(s)

Eric Scott

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- terra::rast(f)
r_tiles <- tile_grid(r, ncol = 2, nrow = 2)
r_tiles

Index

geotargets_option_get
(geotargets_option_set), 2

geotargets_option_set, 2

set_window, 3
sf::st_drivers(), 6
stars::read_ncdf(), 6
stars::read_stars(), 6
stars::write_mdim(), 6
stars::write_stars(), 6

tar_make(), 8, 11, 15, 19, 23
tar_make_clustermq(), 7, 11, 14, 15, 18, 19,

23
tar_make_future(), 7, 11, 14, 15, 18, 19, 22,

23
tar_manifest(), 8, 11, 15, 19, 23
tar_resources_aws(), 6, 10, 13, 17, 22
tar_seed_set(), 5, 9, 13, 17, 21
tar_stars, 4
tar_stars_proxy (tar_stars), 4
tar_terra_rast, 8
tar_terra_rast(), 19
tar_terra_sprc, 12
tar_terra_tiles, 16
tar_terra_tiles(), 4, 24
tar_terra_vect, 20
tar_visnetwork(), 8, 11, 15, 19, 23
targets::tar_target_raw(), 8, 12, 15
terra::ext(), 25
terra::fileBlocksize(), 25
terra::getTileExtents(), 24
terra::makeTiles(), 17
terra::SpatRaster, 8
terra::SpatRasterCollection, 12
terra::SpatVector, 20
terra::window(), 3
terra::writeRaster(), 9, 13
terra::writeVector(), 21
tile_blocksize, 17

tile_blocksize (tile_grid), 24
tile_blocksize(), 19
tile_grid, 17, 24
tile_grid(), 19

26

	geotargets_option_set
	set_window
	tar_stars
	tar_terra_rast
	tar_terra_sprc
	tar_terra_tiles
	tar_terra_vect
	tile_grid
	Index

