Package 'naniar'

Title: Data Structures, Summaries, and Visualisations for Missing Data
Description: Missing values are ubiquitous in data and need to be explored and handled in the initial stages of analysis. 'naniar' provides data structures and functions that facilitate the plotting of missing values and examination of imputations. This allows missing data dependencies to be explored with minimal deviation from the common work patterns of 'ggplot2' and tidy data. The work is fully discussed at Tierney & Cook (2023) <doi:10.18637/jss.v105.i07>.
Authors: Nicholas Tierney [aut, cre] , Di Cook [aut] , Miles McBain [aut] , Colin Fay [aut] , Mitchell O'Hara-Wild [ctb], Jim Hester [ctb], Luke Smith [ctb], Andrew Heiss [ctb]
Maintainer: Nicholas Tierney <[email protected]>
License: MIT + file LICENSE
Version: 1.1.0.9000
Built: 2025-01-10 03:33:22 UTC
Source: https://github.com/njtierney/naniar

Help Index


Add a column describing presence of any missing values

Description

This adds a column named "any_miss" (by default) that describes whether there are any missings in all of the variables (default), or whether any of the specified columns, specified using variables names or dplyr verbs, starts_with, contains, ends_with, etc. By default the added column will be called "any_miss_all", if no variables are specified, otherwise, if variables are specified, the label will be "any_miss_vars" to indicate that not all variables have been used to create the labels.

Usage

add_any_miss(
  data,
  ...,
  label = "any_miss",
  missing = "missing",
  complete = "complete"
)

Arguments

data

data.frame

...

Variable names to use instead of the whole dataset. By default this looks at the whole dataset. Otherwise, this is one or more unquoted expressions separated by commas. These also respect the dplyr verbs starts_with, contains, ends_with, etc. By default will add "_all" to the label if left blank, otherwise will add "_vars" to distinguish that it has not been used on all of the variables.

label

label for the column, defaults to "any_miss". By default if no additional variables are listed the label col is "any_miss_all", otherwise it is "any_miss_vars", if variables are specified.

missing

character a label for when values are missing - defaults to "missing"

complete

character character a label for when values are complete - defaults to "complete"

Details

By default the prefix "any_miss" is used, but this can be changed in the label argument.

Value

data.frame with data and the column labelling whether that row (for those variables) has any missing values - indicated by "missing" and "complete".

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>% add_any_miss()
airquality %>% add_any_miss(Ozone, Solar.R)

Add a column describing if there are any missings in the dataset

Description

Add a column describing if there are any missings in the dataset

Usage

add_label_missings(data, ..., missing = "Missing", complete = "Not Missing")

Arguments

data

data.frame

...

extra variable to label

missing

character a label for when values are missing - defaults to "Missing"

complete

character character a label for when values are complete - defaults to "Not Missing"

Value

data.frame with a column "any_missing" that is either "Not Missing" or "Missing" for the purposes of plotting / exploration / nice print methods

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>% add_label_missings()
airquality %>% add_label_missings(Ozone, Solar.R)
airquality %>% add_label_missings(Ozone, Solar.R, missing = "yes", complete = "no")

Add a column describing whether there is a shadow

Description

Instead of focussing on labelling whether there are missings, we instead focus on whether there have been any shadows created. This can be useful when data has been imputed and you need to determine which rows contained missing values when the shadow was bound to the dataset.

Usage

add_label_shadow(data, ..., missing = "Missing", complete = "Not Missing")

Arguments

data

data.frame

...

extra variable to label

missing

character a label for when values are missing - defaults to "Missing"

complete

character character a label for when values are complete - defaults to "Not Missing"

Value

data.frame with a column, "any_missing", which describes whether or not there are any rows that have a shadow value.

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>%
  add_shadow(Ozone, Solar.R) %>%
  add_label_shadow()

Add a column that tells us which "missingness cluster" a row belongs to

Description

A way to extract the cluster of missingness that a group belongs to. For example, if you use vis_miss(airquality, cluster = TRUE), you can see some clustering in the data, but you do not have a way to identify the cluster. Future work will incorporate the seriation package to allow for better control over the clustering from the user.

Usage

add_miss_cluster(data, cluster_method = "mcquitty", n_clusters = 2)

Arguments

data

a dataframe

cluster_method

character vector of the agglomeration method to use, the default is "mcquitty". Options are taken from stats::hclust helpfile, and options include: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

n_clusters

numeric the number of clusters you expect. Defaults to 2.

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

add_miss_cluster(airquality)
add_miss_cluster(airquality, n_clusters = 3)
add_miss_cluster(airquality, cluster_method = "ward.D", n_clusters = 3)

Add column containing number of missing data values

Description

It can be useful when doing data analysis to add the number of missing data points into your dataframe. add_n_miss adds a column named "n_miss", which contains the number of missing values in that row.

Usage

add_n_miss(data, ..., label = "n_miss")

Arguments

data

a dataframe

...

Variable names to use instead of the whole dataset. By default this looks at the whole dataset. Otherwise, this is one or more unquoted expressions separated by commas. These also respect the dplyr verbs starts_with, contains, ends_with, etc. By default will add "_all" to the label if left blank, otherwise will add "_vars" to distinguish that it has not been used on all of the variables.

label

character default is "n_miss".

Value

a dataframe

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>% add_n_miss()
airquality %>% add_n_miss(Ozone, Solar.R)
airquality %>% add_n_miss(dplyr::contains("o"))

Add column containing proportion of missing data values

Description

It can be useful when doing data analysis to add the proportion of missing data values into your dataframe. add_prop_miss adds a column named "prop_miss", which contains the proportion of missing values in that row. You can specify the variables that you would like to show the missingness for.

Usage

add_prop_miss(data, ..., label = "prop_miss")

Arguments

data

a dataframe

...

Variable names to use instead of the whole dataset. By default this looks at the whole dataset. Otherwise, this is one or more unquoted expressions separated by commas. These also respect the dplyr verbs starts_with, contains, ends_with, etc. By default will add "_all" to the label if left blank, otherwise will add "_vars" to distinguish that it has not been used on all of the variables.

label

character string of what you need to name variable

Value

a dataframe

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>% add_prop_miss()
airquality %>% add_prop_miss(Solar.R, Ozone)
airquality %>% add_prop_miss(Solar.R, Ozone, label = "testing")

# this can be applied to model the proportion of missing data
# as in Tierney et al \doi{10.1136/bmjopen-2014-007450}
# see "Modelling missingness" in vignette "Getting Started with naniar"
# for details

Add a shadow column to dataframe

Description

As an alternative to bind_shadow(), you can add specific individual shadow columns to a dataset. These also respect the dplyr verbs starts_with, contains, ends_with, etc.

Usage

add_shadow(data, ...)

Arguments

data

data.frame

...

One or more unquoted variable names, separated by commas. These also respect the dplyr verbs starts_with, contains, ends_with, etc.

Value

data.frame

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>% add_shadow(Ozone)
airquality %>% add_shadow(Ozone, Solar.R)

Add a shadow shifted column to a dataset

Description

Shadow shift missing values using only the selected variables in a dataset, by specifying variable names or use dplyr vars and dplyr verbs starts_with, contains, ends_with, etc.

Usage

add_shadow_shift(data, ..., suffix = "shift")

Arguments

data

data.frame

...

One or more unquoted variable names separated by commas. These also respect the dplyr verbs starts_with, contains, ends_with, etc.

suffix

suffix to add to variable, defaults to "shift"

Value

data with the added variable shifted named as var_suffix

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

airquality %>% add_shadow_shift(Ozone, Solar.R)

Add a counter variable for a span of dataframe

Description

Adds a variable, span_counter to a dataframe. Used internally to facilitate counting of missing values over a given span.

Usage

add_span_counter(data, span_size)

Arguments

data

data.frame

span_size

integer

Value

data.frame with extra variable "span_counter".

Examples

## Not run: 
# add_span_counter(pedestrian, span_size = 100)

## End(Not run)

Helper function to determine whether there are any missings

Description

Helper function to determine whether there are any missings

Usage

any_row_miss(x)

Arguments

x

a vector

Value

logical vector TRUE = missing FALSE = complete


Identify if there are any or all missing or complete values

Description

It is useful when exploring data to search for cases where there are any or all instances of missing or complete values. For example, these can help you identify and potentially remove or keep columns in a data frame that are all missing, or all complete.

For the any case, we provide two functions: any_miss and any_complete. Note that any_miss has an alias, any_na. These both under the hood call anyNA. any_complete is the complement to any_miss - it returns TRUE if there are any complete values. Note that in a dataframe any_complete will look for complete cases, which are complete rows, which is different to complete variables.

For the all case, there are two functions: all_miss, and all_complete.

Usage

any_na(x)

any_miss(x)

any_complete(x)

all_na(x)

all_miss(x)

all_complete(x)

Arguments

x

an object to explore missings/complete values

See Also

all_miss() all_complete

Examples

# for vectors
misses <- c(NA, NA, NA)
complete <- c(1, 2, 3)
mixture <- c(NA, 1, NA)

all_na(misses)
all_na(complete)
all_na(mixture)
all_complete(misses)
all_complete(complete)
all_complete(mixture)

any_na(misses)
any_na(complete)
any_na(mixture)

# for data frames
all_na(airquality)
# an alias of all_na
all_miss(airquality)
all_complete(airquality)

any_na(airquality)
any_complete(airquality)

# use in identifying columns with all missing/complete

library(dplyr)
# for printing
aq <- as_tibble(airquality)
aq
# select variables with all missing values
aq %>% select(where(all_na))
# there are none!
#' # select columns with any NA values
aq %>% select(where(any_na))
# select only columns with all complete data
aq %>% select(where(all_complete))

# select columns where there are any complete cases (all the data)
aq %>% select(where(any_complete))

Create shadows

Description

Return a tibble in shadow matrix form, where the variables are the same but have a suffix _NA attached to distinguish them.

Usage

as_shadow(data, ...)

Arguments

data

dataframe

...

selected variables to use

Details

Representing missing data structure is achieved using the shadow matrix, introduced in Swayne and Buja. The shadow matrix is the same dimension as the data, and consists of binary indicators of missingness of data values, where missing is represented as "NA", and not missing is represented as "!NA". Although these may be represented as 1 and 0, respectively.

Value

appended shadow with column names

Examples

as_shadow(airquality)

Convert data into shadow format for doing an upset plot

Description

Upset plots are a way of visualising common sets, this function transforms the data into a format that feeds directly into an upset plot

Usage

as_shadow_upset(data)

Arguments

data

a data.frame

Value

a data.frame

Examples

## Not run: 

library(UpSetR)
airquality %>%
  as_shadow_upset() %>%
  upset()

## End(Not run)

Bind a shadow dataframe to original data

Description

Binding a shadow matrix to a regular dataframe helps visualise and work with missing data.

Usage

bind_shadow(data, only_miss = FALSE, ...)

Arguments

data

a dataframe

only_miss

logical - if FALSE (default) it will bind a dataframe with all of the variables duplicated with their shadow. Setting this to TRUE will bind variables only those variables that contain missing values. See the examples for more details.

...

extra options to pass to recode_shadow() - a work in progress.

Value

data with the added variable shifted and the suffix ⁠_NA⁠

Examples

bind_shadow(airquality)

# bind only the variables that contain missing values
bind_shadow(airquality, only_miss = TRUE)

aq_shadow <- bind_shadow(airquality)

## Not run: 
# explore missing data visually
library(ggplot2)

# using the bounded shadow to visualise Ozone according to whether Solar
# Radiation is missing or not.

ggplot(data = aq_shadow,
       aes(x = Ozone)) +
       geom_histogram() +
       facet_wrap(~Solar.R_NA,
       ncol = 1)

## End(Not run)

Add a shadow column to a dataset

Description

Casting a shadow shifted column performs the equivalent pattern to data %>% select(var) %>% impute_below(). This is a convenience function that makes it easy to perform certain visualisations, in line with the principle that the user should have a way to flexibly return data formats containing information about the missing data. It forms the base building block for the functions cast_shadow_shift, and cast_shadow_shift_label. It also respects the dplyr verbs starts_with, contains, ends_with, etc. to select variables.

Usage

cast_shadow(data, ...)

Arguments

data

data.frame

...

One or more unquoted variable names separated by commas. These respect the dplyr verbs starts_with, contains, ends_with, etc.

Value

data with the added variable shifted and the suffix ⁠_NA⁠

See Also

cast_shadow_shift(), cast_shadow_shift_label() bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_prop_miss() add_shadow_shift()

Examples

airquality %>% cast_shadow(Ozone, Solar.R)
## Not run: 
library(ggplot2)
library(magrittr)
airquality  %>%
  cast_shadow(Ozone,Solar.R) %>%
  ggplot(aes(x = Ozone,
             colour = Solar.R_NA)) +
        geom_density()

## End(Not run)

Add a shadow and a shadow_shift column to a dataset

Description

Shift the values and add a shadow column. It also respects the dplyr verbs starts_with, contains, ends_with, etc.

Usage

cast_shadow_shift(data, ...)

Arguments

data

data.frame

...

One or more unquoted variable names separated by commas. These respect the dplyr verbs starts_with, contains, ends_with, etc.

Value

data.frame with the shadow and shadow_shift vars

See Also

cast_shadow_shift(), cast_shadow_shift_label() bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_prop_miss() add_shadow_shift()

Examples

airquality %>% cast_shadow_shift(Ozone,Temp)

airquality %>% cast_shadow_shift(dplyr::contains("o"))

Add a shadow column and a shadow shifted column to a dataset

Description

Shift the values, add shadow, add missing label

Usage

cast_shadow_shift_label(data, ...)

Arguments

data

data.frame

...

One or more unquoted expressions separated by commas. These also respect the dplyr verbs "starts_with", "contains", "ends_with", etc.

Value

data.frame with the shadow and shadow_shift vars, and missing labels

See Also

cast_shadow_shift(), cast_shadow_shift_label() bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_prop_miss() add_shadow_shift()

Examples

airquality %>% cast_shadow_shift_label(Ozone, Solar.R)

# replicate the plot generated by geom_miss_point()
## Not run: 
library(ggplot2)

airquality %>%
  cast_shadow_shift_label(Ozone,Solar.R) %>%
  ggplot(aes(x = Ozone_shift,
             y = Solar.R_shift,
             colour = any_missing)) +
        geom_point()

## End(Not run)

Common number values for NA

Description

This vector contains common number values of NA (missing), which is aimed to be used inside naniar functions miss_scan_count() and replace_with_na(). The current list of numbers can be found by printing out common_na_numbers. It is a useful way to explore your data for possible missings, but I strongly warn against using this to replace NA values without very carefully looking at the incidence for each of the cases. Common NA strings are in the data object common_na_strings.

Usage

common_na_numbers

Format

An object of class numeric of length 8.

Note

original discussion here https://github.com/njtierney/naniar/issues/168

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                          1,   "A",   -100,
                          3,   "N/A", -99,
                          NA,  NA,    -98,
                          -99, "E",   -101,
                          -98, "F",   -1)

miss_scan_count(dat_ms, -99)
miss_scan_count(dat_ms, c("-99","-98","N/A"))
common_na_numbers
miss_scan_count(dat_ms, common_na_numbers)

Common string values for NA

Description

This vector contains common values of NA (missing), which is aimed to be used inside naniar functions miss_scan_count() and replace_with_na(). The current list of strings used can be found by printing out common_na_strings. It is a useful way to explore your data for possible missings, but I strongly warn against using this to replace NA values without very carefully looking at the incidence for each of the cases. Please note that common_na_strings uses ⁠\\⁠ around the "?", "." and "*" characters to protect against using their wildcard features in grep. Common NA numbers are in the data object common_na_numbers.

Usage

common_na_strings

Format

An object of class character of length 26.

Note

original discussion here https://github.com/njtierney/naniar/issues/168

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                          1,   "A",   -100,
                          3,   "N/A", -99,
                          NA,  NA,    -98,
                          -99, "E",   -101,
                          -98, "F",   -1)

miss_scan_count(dat_ms, -99)
miss_scan_count(dat_ms, c("-99","-98","N/A"))
common_na_strings
miss_scan_count(dat_ms, common_na_strings)
replace_with_na(dat_ms, replace = list(y = common_na_strings))

Long form representation of a shadow matrix

Description

gather_shadow is a long-form representation of binding the shadow matrix to your data, producing variables named case, variable, and missing, where missing contains the missing value representation.

Usage

gather_shadow(data)

Arguments

data

a dataframe

Value

dataframe in long, format, containing information about the missings

Examples

gather_shadow(airquality)

Plot Missing Data Points

Description

geom_miss_point provides a way to transform and plot missing values in ggplot2. To do so it uses methods from ggobi to display missing data points 10\ the same axis.

Usage

geom_miss_point(
  mapping = NULL,
  data = NULL,
  prop_below = 0.1,
  jitter = 0.05,
  stat = "miss_point",
  position = "identity",
  colour = ..missing..,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)

Arguments

mapping

Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_(). If specified and inherit.aes = TRUE (the default), is combined with the default mapping at the top level of the plot. You only need to supply mapping if there isn't a mapping defined for the plot.

data

A data frame. If specified, overrides the default data frame defined at the top level of the plot.

prop_below

the degree to shift the values. The default is 0.1

jitter

the amount of jitter to add. The default is 0.05

stat

The statistical transformation to use on the data for this layer, as a string.

position

Position adjustment, either as a string, or the result of a call to a position adjustment function.

colour

the colour chosen for the aesthetic

na.rm

If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders.

...

other arguments passed on to ggplot2::layer(). There are three types of arguments you can use here:

  • Aesthetics: to set an aesthetic to a fixed value, like color = "red" or size = 3.

  • Other arguments to the layer, for example you override the default stat associated with the layer.

  • Other arguments passed on to the stat.

Note

Warning message if na.rm = T is supplied.

See Also

gg_miss_case() gg_miss_case_cumsum() gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

## Not run: 
library(ggplot2)

# using regular geom_point()
ggplot(airquality,
       aes(x = Ozone,
           y = Solar.R)) +
geom_point()

# using  geom_miss_point()
ggplot(airquality,
       aes(x = Ozone,
           y = Solar.R)) +
 geom_miss_point()

 # using facets

ggplot(airquality,
       aes(x = Ozone,
           y = Solar.R)) +
 geom_miss_point() +
 facet_wrap(~Month)

## End(Not run)

naniar-ggproto

Description

These are the stat and geom overrides using ggproto from ggplot2 that make naniar work.

Usage

StatMissPoint

Format

An object of class StatMissPoint (inherits from Stat, ggproto, gg) of length 6.


Plot the number of missings per case (row)

Description

This is a visual analogue to miss_case_summary. It draws a ggplot of the number of missings in each case (row). A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_case(x, facet, order_cases = TRUE, show_pct = FALSE)

Arguments

x

data.frame

facet

(optional) a single bare variable name, if you want to create a faceted plot.

order_cases

logical Order the rows by missingness (default is FALSE - no order).

show_pct

logical Show the percentage of cases

Value

a ggplot object depicting the number of missings in a given case.

See Also

geom_miss_point() gg_miss_case_cumsum() gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

gg_miss_case(airquality)
## Not run: 
library(ggplot2)
gg_miss_case(airquality) + labs(x = "Number of Cases")
gg_miss_case(airquality, show_pct = TRUE)
gg_miss_case(airquality, order_cases = FALSE)
gg_miss_case(airquality, facet = Month)
gg_miss_case(airquality, facet = Month, order_cases = FALSE)
gg_miss_case(airquality, facet = Month, show_pct = TRUE)

## End(Not run)

Plot of cumulative sum of missing for cases

Description

A plot showing the cumulative sum of missing values for cases, reading the rows from the top to bottom. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_case_cumsum(x, breaks = 20)

Arguments

x

a dataframe

breaks

the breaks for the x axis default is 20

Value

a ggplot object depicting the number of missings

See Also

geom_miss_point() gg_miss_case() gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

gg_miss_case_cumsum(airquality)

Plot the number of missings for each variable, broken down by a factor

Description

This function draws a ggplot plot of the number of missings in each column, broken down by a categorical variable from the dataset. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_fct(x, fct)

Arguments

x

data.frame

fct

column containing the factor variable to visualise

Value

ggplot object depicting the % missing of each factor level for each variable.

See Also

geom_miss_point() gg_miss_case() gg_miss_case_cumsum() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

gg_miss_fct(x = riskfactors, fct = marital)
## Not run: 
library(ggplot2)
gg_miss_fct(x = riskfactors, fct = marital) + labs(title = "NA in Risk Factors and Marital status")

## End(Not run)

Plot the number of missings in a given repeating span

Description

gg_miss_span is a replacement function to imputeTS::plotNA.distributionBar(tsNH4, breaksize = 100), which shows the number of missings in a given span, or breaksize. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_span(data, var, span_every, facet)

Arguments

data

data.frame

var

a bare unquoted variable name from data.

span_every

integer describing the length of the span to be explored

facet

(optional) a single bare variable name, if you want to create a faceted plot.

Value

ggplot2 showing the number of missings in a span (window, or breaksize)

See Also

geom_miss_point() gg_miss_case() gg_miss_case_cumsum() gg_miss_fct() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

miss_var_span(pedestrian, hourly_counts, span_every = 3000)
## Not run: 
library(ggplot2)
gg_miss_span(pedestrian, hourly_counts, span_every = 3000)
gg_miss_span(pedestrian, hourly_counts, span_every = 3000, facet = sensor_name)
# works with the rest of ggplot
gg_miss_span(pedestrian, hourly_counts, span_every = 3000) + labs(x = "custom")
gg_miss_span(pedestrian, hourly_counts, span_every = 3000) + theme_dark()

## End(Not run)

Plot the pattern of missingness using an upset plot.

Description

Upset plots are a way of visualising common sets, gg_miss_upset shows the number of missing values for each of the sets of data. The default option of gg_miss_upset is taken from UpSetR::upset - which is to use up to 5 sets and up to 40 interactions. We also set the ordering to by the frequency of the intersections. Setting nsets = 5 means to look at 5 variables and their combinations. The number of combinations or rather intersections is controlled by nintersects. If there are 40 intersections, there will be 40 combinations of variables explored. The number of sets and intersections can be changed by passing arguments nsets = 10 to look at 10 sets of variables, and nintersects = 50 to look at 50 intersections.

Usage

gg_miss_upset(data, order.by = "freq", ...)

Arguments

data

data.frame

order.by

(from UpSetR::upset) How the intersections in the matrix should be ordered by. Options include frequency (entered as "freq"), degree, or both in any order. See ?UpSetR::upset for more options

...

arguments to pass to upset plot - see ?UpSetR::upset

Value

a ggplot visualisation of missing data

Examples

## Not run: 
gg_miss_upset(airquality)
gg_miss_upset(riskfactors)
gg_miss_upset(riskfactors, nsets = 10)
gg_miss_upset(riskfactors, nsets = 10, nintersects = 10)

## End(Not run)

Plot the number of missings for each variable

Description

This is a visual analogue to miss_var_summary. It draws a ggplot of the number of missings in each variable, ordered to show which variables have the most missing data. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_var(x, facet, show_pct = FALSE)

Arguments

x

a dataframe

facet

(optional) bare variable name, if you want to create a faceted plot.

show_pct

logical shows the number of missings (default), but if set to TRUE, it will display the proportion of missings.

Value

a ggplot object depicting the number of missings in a given column

See Also

geom_miss_point() gg_miss_case() gg_miss_case_cumsum() gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

gg_miss_var(airquality)
## Not run: 
library(ggplot2)
gg_miss_var(airquality) + labs(y = "Look at all the missing ones")
gg_miss_var(airquality, Month)
gg_miss_var(airquality, Month, show_pct = TRUE)
gg_miss_var(airquality, Month, show_pct = TRUE) + ylim(0, 100)

## End(Not run)

Plot of cumulative sum of missing value for each variable

Description

A plot showing the cumulative sum of missing values for each variable, reading columns from the left to the right of the initial dataframe. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_var_cumsum(x)

Arguments

x

a data.frame

Value

a ggplot object showing the cumulative sum of missings over the variables

See Also

geom_miss_point() gg_miss_case() gg_miss_case_cumsum() gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_which()

Examples

gg_miss_var_cumsum(airquality)

Plot which variables contain a missing value

Description

This plot produces a set of rectangles indicating whether there is a missing element in a column or not. A default minimal theme is used, which can be customised as normal for ggplot.

Usage

gg_miss_which(x)

Arguments

x

a dataframe

Value

a ggplot object of which variables contains missing values

See Also

geom_miss_point() gg_miss_case() gg_miss_case_cumsum() gg_miss_fct() gg_miss_span() gg_miss_var() gg_miss_var_cumsum() gg_miss_which()

Examples

gg_miss_which(airquality)

Impute data with values shifted 10 percent below range.

Description

It can be useful in exploratory graphics to impute data outside the range of the data. impute_below imputes variables with missings to have values 10 percent below the range for numeric values, plus some jittered noise, to separate repeated values, so that missing values can be visualised along with the rest of the data. For character or factor values, it adds a new string or label.

Usage

impute_below(x, ...)

Arguments

x

a variable of interest to shift

...

extra arguments to pass

See Also

add_shadow_shift() cast_shadow_shift() cast_shadow_shift_label()

Examples

library(dplyr)
vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

impute_below(vec)
impute_below(vec, prop_below = 0.25)
impute_below(vec,
            prop_below = 0.25,
            jitter = 0.2)

dat <- tibble(
 num = rnorm(10),
 int = as.integer(rpois(10, 5)),
 fct = factor(LETTERS[1:10])
) %>%
 mutate(
   across(
     everything(),
     \(x) set_prop_miss(x, prop = 0.25)
   )
 )

dat

dat %>%
 nabular() %>%
 mutate(
   num = impute_below(num),
   int = impute_below(int),
   fct = impute_below(fct),
 )

dat %>%
 nabular() %>%
 mutate(
   across(
     where(is.numeric),
     impute_below
   )
 )

dat %>%
 nabular() %>%
 mutate(
   across(
     c("num", "int"),
     impute_below
   )
 )

Impute data with values shifted 10 percent below range.

Description

It can be useful in exploratory graphics to impute data outside the range of the data. impute_below_all imputes all variables with missings to have values 10\ values adds a new string or label.

Usage

impute_below_all(.tbl, prop_below = 0.1, jitter = 0.05, ...)

Arguments

.tbl

a data.frame

prop_below

the degree to shift the values. default is

jitter

the amount of jitter to add. default is 0.05

...

additional arguments

Details

[Superseded]

Value

an dataset with values imputed

Examples

# you can impute data like so:
airquality %>%
  impute_below_all()

# However, this does not show you WHERE the missing values are.
# to keep track of them, you want to use `bind_shadow()` first.

airquality %>%
  bind_shadow() %>%
  impute_below_all()

# This identifies where the missing values are located, which means you
# can do things like this:

## Not run: 
library(ggplot2)
airquality %>%
  bind_shadow() %>%
  impute_below_all() %>%
  # identify where there are missings across rows.
  add_label_shadow() %>%
  ggplot(aes(x = Ozone,
             y = Solar.R,
             colour = any_missing)) +
  geom_point()
# Note that this ^^ is a long version of `geom_miss_point()`.

## End(Not run)

Scoped variants of impute_below

Description

impute_below imputes missing values to a set percentage below the range of the data. To impute many variables at once, we recommend that you use the across function workflow, shown in the examples for impute_below(). impute_below_all operates on all variables. To only impute variables that satisfy a specific condition, use the scoped variants, impute_below_at, and impute_below_if. To use ⁠_at⁠ effectively, you must know that ⁠_at`` affects variables selected with a character vector, or with ⁠vars()'.

Usage

impute_below_at(.tbl, .vars, prop_below = 0.1, jitter = 0.05, ...)

Arguments

.tbl

a data.frame

.vars

variables to impute

prop_below

the degree to shift the values. default is

jitter

the amount of jitter to add. default is 0.05

...

extra arguments

Details

[Superseded]

Value

an dataset with values imputed

Examples

# select variables starting with a particular string.
impute_below_at(airquality,
                .vars = c("Ozone", "Solar.R"))

impute_below_at(airquality, .vars = 1:2)

## Not run: 
library(dplyr)
impute_below_at(airquality,
                .vars = vars(Ozone))

library(ggplot2)
airquality %>%
  bind_shadow() %>%
  impute_below_at(vars(Ozone, Solar.R)) %>%
  add_label_shadow() %>%
  ggplot(aes(x = Ozone,
             y = Solar.R,
             colour = any_missing)) +
         geom_point()

## End(Not run)

Scoped variants of impute_below

Description

impute_below operates on all variables. To only impute variables that satisfy a specific condition, use the scoped variants, impute_below_at, and impute_below_if.

Usage

impute_below_if(.tbl, .predicate, prop_below = 0.1, jitter = 0.05, ...)

Arguments

.tbl

data.frame

.predicate

A predicate function (such as is.numeric)

prop_below

the degree to shift the values. default is

jitter

the amount of jitter to add. default is 0.05

...

extra arguments

Value

an dataset with values imputed

Examples

airquality %>%
  impute_below_if(.predicate = is.numeric)

Impute numeric values below a range for graphical exploration

Description

Impute numeric values below a range for graphical exploration

Usage

## S3 method for class 'numeric'
impute_below(
  x,
  prop_below = 0.1,
  jitter = 0.05,
  seed_shift = 2017 - 7 - 1 - 1850,
  ...
)

Arguments

x

a variable of interest to shift

prop_below

the degree to shift the values. default is

jitter

the amount of jitter to add. default is 0.05

seed_shift

a random seed to set, if you like

...

extra arguments to pass


Impute a factor value into a vector with missing values

Description

For imputing fixed factor levels. It adds the new imputed value to the end of the levels of the vector. We generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm().

Usage

impute_factor(x, value)

## Default S3 method:
impute_factor(x, value)

## S3 method for class 'factor'
impute_factor(x, value)

## S3 method for class 'character'
impute_factor(x, value)

## S3 method for class 'shade'
impute_factor(x, value)

Arguments

x

vector

value

factor to impute

Value

vector with a factor values replaced

Examples

vec <- factor(LETTERS[1:10])

vec[sample(1:10, 3)] <- NA

vec

impute_factor(vec, "wat")

library(dplyr)

dat <- tibble(
  num = rnorm(10),
  int = rpois(10, 5),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat

dat %>%
  nabular() %>%
  mutate(
    num = impute_fixed(num, -9999),
    int = impute_zero(int),
    fct = impute_factor(fct, "out")
  )

Impute a fixed value into a vector with missing values

Description

This can be useful if you are imputing specific values, however we would generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm().

Usage

impute_fixed(x, value)

## Default S3 method:
impute_fixed(x, value)

Arguments

x

vector

value

value to impute

Value

vector with a fixed values replaced

Examples

vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

vec

impute_fixed(vec, -999)

library(dplyr)

dat <- tibble(
  num = rnorm(10),
  int = rpois(10, 5),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat

dat %>%
  nabular() %>%
  mutate(
    num = impute_fixed(num, -9999),
    int = impute_zero(int),
    fct = impute_factor(fct, "out")
  )

Impute the mean value into a vector with missing values

Description

This can be useful if you are imputing specific values, however we would generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm().

Usage

impute_mean(x)

## Default S3 method:
impute_mean(x)

## S3 method for class 'factor'
impute_mean(x)

Arguments

x

vector

Value

vector with mean values replaced

Examples

library(dplyr)
vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

impute_mean(vec)

dat <- tibble(
  num = rnorm(10),
  int = as.integer(rpois(10, 5)),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat

dat %>%
  nabular() %>%
  mutate(
    num = impute_mean(num),
    int = impute_mean(int),
    fct = impute_mean(fct),
  )

dat %>%
  nabular() %>%
  mutate(
    across(
      where(is.numeric),
      impute_mean
    )
  )

dat %>%
  nabular() %>%
  mutate(
    across(
      c("num", "int"),
      impute_mean
    )
  )

Impute the median value into a vector with missing values

Description

Impute the median value into a vector with missing values

Usage

impute_median(x)

## Default S3 method:
impute_median(x)

## S3 method for class 'factor'
impute_median(x)

Arguments

x

vector

Value

vector with median values replaced

Examples

vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

impute_median(vec)

library(dplyr)

dat <- tibble(
  num = rnorm(10),
  int = as.integer(rpois(10, 5)),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat

dat %>%
  nabular() %>%
  mutate(
    num = impute_median(num),
    int = impute_median(int),
  )

dat %>%
  nabular() %>%
  mutate(
    across(
      where(is.numeric),
      impute_median
    )
  )

dat %>%
  nabular() %>%
  mutate(
    across(
      c("num", "int"),
      impute_median
    )
 )

Impute the mode value into a vector with missing values

Description

Impute the mode value into a vector with missing values

Usage

impute_mode(x)

## Default S3 method:
impute_mode(x)

## S3 method for class 'integer'
impute_mode(x)

## S3 method for class 'factor'
impute_mode(x)

Arguments

x

vector

This approach adapts examples provided from stack overflow, and for the integer case, just rounds the value. While this can be useful if you are imputing specific values, however we would generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm().

Value

vector with mode values replaced

Examples

vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

impute_mode(vec)

library(dplyr)

dat <- tibble(
  num = rnorm(10),
  int = rpois(10, 5),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat


dat %>%
  nabular() %>%
  mutate(
    num = impute_mode(num),
    int = impute_mode(int),
    fct = impute_mode(fct)
  )

Impute zero into a vector with missing values

Description

This can be useful if you are imputing specific values, however we would generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm().

Usage

impute_zero(x)

Arguments

x

vector

Value

vector with a fixed values replaced

Examples

vec <- rnorm(10)

vec[sample(1:10, 3)] <- NA

vec

impute_zero(vec)

library(dplyr)

dat <- tibble(
  num = rnorm(10),
  int = rpois(10, 5),
  fct = factor(LETTERS[1:10])
) %>%
  mutate(
    across(
      everything(),
      \(x) set_prop_miss(x, prop = 0.25)
    )
  )

dat

dat %>%
  nabular() %>%
  mutate(
    num = impute_fixed(num, -9999),
    int = impute_zero(int),
    fct = impute_factor(fct, "out")
  )

Detect if this is a shade

Description

This tells us if this column is a shade

Usage

is_shade(x)

are_shade(x)

any_shade(x)

Arguments

x

a vector you want to test if is a shade

Value

logical - is this a shade?

Examples

xs <- shade(c(NA, 1, 2, "3"))

is_shade(xs)
are_shade(xs)
any_shade(xs)

aq_s <- as_shadow(airquality)

is_shade(aq_s)
are_shade(aq_s)
any_shade(aq_s)
any_shade(airquality)

Label a missing from one column

Description

Label whether a value is missing in a row of one columns.

Usage

label_miss_1d(x1)

Arguments

x1

a variable of a dataframe

Value

a vector indicating whether any of these rows had missing values

Note

can we generalise label_miss to work for any number of variables?

See Also

add_any_miss() add_label_missings() add_label_shadow()

Examples

label_miss_1d(airquality$Ozone)

label_miss_2d

Description

Label whether a value is missing in either row of two columns.

Usage

label_miss_2d(x1, x2)

Arguments

x1

a variable of a dataframe

x2

another variable of a dataframe

Value

a vector indicating whether any of these rows had missing values

Examples

label_miss_2d(airquality$Ozone, airquality$Solar.R)

Is there a missing value in the row of a dataframe?

Description

Creates a character vector describing presence/absence of missing values

Usage

label_missings(data, ..., missing = "Missing", complete = "Not Missing")

Arguments

data

a dataframe or set of vectors of the same length

...

extra variable to label

missing

character a label for when values are missing - defaults to "Missing"

complete

character character a label for when values are complete - defaults to "Not Missing"

Value

character vector of "Missing" and "Not Missing".

See Also

bind_shadow() add_any_miss() add_label_missings() add_label_shadow() add_miss_cluster() add_n_miss() add_prop_miss() add_shadow_shift() cast_shadow()

Examples

label_missings(airquality)

## Not run: 
library(dplyr)

airquality %>%
  mutate(is_missing = label_missings(airquality)) %>%
  head()

airquality %>%
  mutate(is_missing = label_missings(airquality,
                                     missing = "definitely missing",
                                     complete = "absolutely complete")) %>%
  head()

## End(Not run)

Little's missing completely at random (MCAR) test

Description

Use Little's (1988) test statistic to assess if data is missing completely at random (MCAR). The null hypothesis in this test is that the data is MCAR, and the test statistic is a chi-squared value. The example below shows the output of mcar_test(airquality). Given the high statistic value and low p-value, we can conclude the airquality data is not missing completely at random.

Usage

mcar_test(data)

Arguments

data

A data frame

Value

A tibble::tibble() with one row and four columns:

statistic

Chi-squared statistic for Little's test

df

Degrees of freedom used for chi-squared statistic

p.value

P-value for the chi-squared statistic

missing.patterns

Number of missing data patterns in the data

Note

Code is adapted from LittleMCAR() in the now-orphaned BaylorEdPsych package: https://rdrr.io/cran/BaylorEdPsych/man/LittleMCAR.html. Some of code is adapted from Eric Stemmler: https://web.archive.org/web/20201120030409/https://stats-bayes.com/post/2020/08/14/r-function-for-little-s-test-for-data-missing-completely-at-random/ using Maximum likelihood estimation from norm.

Author(s)

Andrew Heiss, [email protected]

References

Little, Roderick J. A. 1988. "A Test of Missing Completely at Random for Multivariate Data with Missing Values." Journal of the American Statistical Association 83 (404): 1198–1202. doi:10.1080/01621459.1988.10478722.

Examples

mcar_test(airquality)
mcar_test(oceanbuoys)

# If there are non-numeric columns, there will be a warning
mcar_test(riskfactors)

Summarise the missingness in each case

Description

Provide a data.frame containing each case (row), the number and percent of missing values in each case.

Usage

miss_case_cumsum(data)

Arguments

data

a dataframe

Value

a tibble containing the number and percent of missing data in each case

[Deprecated]

Examples

miss_case_cumsum(airquality)

## Not run: 
library(dplyr)

airquality %>%
  group_by(Month) %>%
  miss_case_cumsum()

## End(Not run)

Summarise the missingness in each case

Description

Provide a summary for each case in the data of the number, percent missings, and cumulative sum of missings of the order of the variables. By default, it orders by the most missings in each variable.

Usage

miss_case_summary(data, order = TRUE, add_cumsum = FALSE, ...)

Arguments

data

a data.frame

order

a logical indicating whether or not to order the result by n_miss. Defaults to TRUE. If FALSE, order of cases is the order input.

add_cumsum

logical indicating whether or not to add the cumulative sum of missings to the data. This can be useful when exploring patterns of nonresponse. These are calculated as the cumulative sum of the missings in the variables as they are first presented to the function.

...

extra arguments

Value

a tibble of the percent of missing data in each case.

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

miss_case_summary(airquality)

## Not run: 
# works with group_by from dplyr
library(dplyr)
airquality %>%
  group_by(Month) %>%
  miss_case_summary()

## End(Not run)

Tabulate missings in cases.

Description

Provide a tidy table of the number of cases with 0, 1, 2, up to n, missing values and the proportion of the number of cases those cases make up.

Usage

miss_case_table(data)

Arguments

data

a dataframe

Value

a dataframe

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

miss_case_table(airquality)
## Not run: 
library(dplyr)
airquality %>%
  group_by(Month) %>%
  miss_case_table()

## End(Not run)

Proportions of missings in data, variables, and cases.

Description

Return missing data info about the dataframe, the variables, and the cases. Specifically, returning how many elements in a dataframe contain a missing value, how many elements in a variable contain a missing value, and how many elements in a case contain a missing.

Usage

miss_prop_summary(data)

Arguments

data

a dataframe

Value

a dataframe

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

miss_prop_summary(airquality)
## Not run: 
library(dplyr)
# respects dplyr::group_by
airquality %>% group_by(Month) %>% miss_prop_summary()

## End(Not run)

Search and present different kinds of missing values

Description

Searching for different kinds of missing values is really annoying. If you have values like -99 in your data, when they shouldn't be there, or they should be encoded as missing, it can be difficult to ascertain if they are there, and if so, where they are. miss_scan_count makes it easier for users to search for particular occurrences of these values across their variables. Note that the searches are done with regular expressions, which are special ways of searching for text. See the example below to see how to look for characters like ⁠?⁠.

Usage

miss_scan_count(data, search)

Arguments

data

data

search

values to search for

Value

a dataframe of the occurrences of the values you searched for

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,  ~specials,
                         1,   "A",   -100, "?",
                         3,   "N/A", -99,  "!",
                         NA,  NA,    -98,  ".",
                         -99, "E",   -101, "*",
                         -98, "F",   -1,  "-")

miss_scan_count(dat_ms,-99)
miss_scan_count(dat_ms,c(-99,-98))
miss_scan_count(dat_ms,c("-99","-98","N/A"))
miss_scan_count(dat_ms, "\\?")
miss_scan_count(dat_ms, "\\!")
miss_scan_count(dat_ms, "\\.")
miss_scan_count(dat_ms, "\\*")
miss_scan_count(dat_ms, "-")
miss_scan_count(dat_ms,common_na_strings)

Collate summary measures from naniar into one tibble

Description

miss_summary performs all of the missing data helper summaries and puts them into lists within a tibble

Usage

miss_summary(data, order = TRUE)

Arguments

data

a dataframe

order

whether or not to order the result by n_miss

Value

a tibble of missing data summaries

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

s_miss <- miss_summary(airquality)
s_miss$miss_df_prop
s_miss$miss_case_table
s_miss$miss_var_summary
# etc, etc, etc.

## Not run: 
library(dplyr)
s_miss_group <- group_by(airquality, Month) %>% miss_summary()
s_miss_group$miss_df_prop
s_miss_group$miss_case_table
# etc, etc, etc.

## End(Not run)

Cumulative sum of the number of missings in each variable

Description

Calculate the cumulative sum of number & percentage of missingness for each variable.

Usage

miss_var_cumsum(data)

Arguments

data

a data.frame

Value

a tibble of the cumulative sum of missing data in each variable

[Deprecated]

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

miss_var_cumsum(airquality)
## Not run: 
library(dplyr)

# respects dplyr::group_by

airquality %>%
  group_by(Month) %>%
  miss_var_cumsum()

## End(Not run)

Find the number of missing and complete values in a single run

Description

It us useful to find the number of missing values that occur in a single run. The function, miss_var_run(), returns a dataframe with the column names "run_length" and "is_na", which describe the length of the run, and whether that run describes a missing value.

Usage

miss_var_run(data, var)

Arguments

data

data.frame

var

a bare variable name

Value

dataframe with column names "run_length" and "is_na", which describe the length of the run, and whether that run describes a missing value.

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

miss_var_run(pedestrian, hourly_counts)

## Not run: 
# find the number of runs missing/complete for each month
library(dplyr)


pedestrian %>%
  group_by(month) %>%
  miss_var_run(hourly_counts)

library(ggplot2)

# explore the number of missings in a given run
miss_var_run(pedestrian, hourly_counts) %>%
  filter(is_na == "missing") %>%
  count(run_length) %>%
  ggplot(aes(x = run_length,
             y = n)) +
      geom_col()

# look at the number of missing values and the run length of these.
miss_var_run(pedestrian, hourly_counts) %>%
  ggplot(aes(x = is_na,
             y = run_length)) +
      geom_boxplot()

# using group_by
 pedestrian %>%
   group_by(month) %>%
   miss_var_run(hourly_counts)

## End(Not run)

Summarise the number of missings for a given repeating span on a variable

Description

To summarise the missing values in a time series object it can be useful to calculate the number of missing values in a given time period. miss_var_span takes a data.frame object, a variable, and a span_every argument and returns a dataframe containing the number of missing values within each span. When the number of observations isn't a perfect multiple of the span length, the final span is whatever the last remainder is. For example, the pedestrian dataset has 37,700 rows. If the span is set to 4000, then there will be 1700 rows remaining. This can be provided using modulo (%%): nrow(data) %% 4000. This remainder number is provided in n_in_span.

Usage

miss_var_span(data, var, span_every)

Arguments

data

data.frame

var

bare unquoted variable name of interest.

span_every

integer describing the length of the span to be explored

Value

dataframe with variables n_miss, n_complete, prop_miss, and prop_complete, which describe the number, or proportion of missing or complete values within that given time span. The final variable, n_in_span states how many observations are in the span.

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

miss_var_span(data = pedestrian,
             var = hourly_counts,
             span_every = 168)

## Not run: 
 library(dplyr)
 pedestrian %>%
   group_by(month) %>%
     miss_var_span(var = hourly_counts,
                   span_every = 168)

## End(Not run)

Summarise the missingness in each variable

Description

Provide a summary for each variable of the number, percent missings, and cumulative sum of missings of the order of the variables. By default, it orders by the most missings in each variable.

Usage

miss_var_summary(data, order = FALSE, add_cumsum = FALSE, digits, ...)

Arguments

data

a data.frame

order

a logical indicating whether to order the result by n_miss. Defaults to TRUE. If FALSE, order of variables is the order input.

add_cumsum

logical indicating whether or not to add the cumulative sum of missings to the data. This can be useful when exploring patterns of nonresponse. These are calculated as the cumulative sum of the missings in the variables as they are first presented to the function.

digits

how many digits to display in pct_miss column. Useful when you are working with small amounts of missing data.

...

extra arguments

Value

a tibble of the percent of missing data in each variable

Note

n_miss_cumsum is calculated as the cumulative sum of missings in the variables in the order that they are given in the data when entering the function

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

miss_var_summary(airquality)
miss_var_summary(oceanbuoys, order = TRUE)

## Not run: 
# works with group_by from dplyr
library(dplyr)
airquality %>%
  group_by(Month) %>%
  miss_var_summary()

## End(Not run)

Tabulate the missings in the variables

Description

Provide a tidy table of the number of variables with 0, 1, 2, up to n, missing values and the proportion of the number of variables those variables make up.

Usage

miss_var_table(data)

Arguments

data

a dataframe

Value

a dataframe

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

miss_var_table(airquality)
## Not run: 
library(dplyr)
airquality %>%
  group_by(Month) %>%
  miss_var_table()

## End(Not run)

Which variables contain missing values?

Description

It can be helpful when writing other functions to just return the names of the variables that contain missing values. miss_var_which returns a vector of variable names that contain missings. It will return NULL when there are no missings.

Usage

miss_var_which(data)

Arguments

data

a data.frame

Value

character vector of variable names

Examples

miss_var_which(airquality)

miss_var_which(mtcars)

Proportion of variables containing missings or complete values

Description

Defunct. Please see prop_miss_var(), prop_complete_var(), pct_miss_var(), pct_complete_var(), prop_miss_case(), prop_complete_case(), pct_miss_case(), pct_complete_case().

Usage

miss_var_prop(...)

complete_var_prop(...)

miss_var_pct(...)

complete_var_pct(...)

miss_case_prop(...)

complete_case_prop(...)

miss_case_pct(...)

complete_case_pct(...)

Arguments

...

arguments


Return the number of complete values

Description

A complement to n_miss

Usage

n_complete(x)

Arguments

x

a vector

Value

numeric number of complete values

Examples

n_complete(airquality)
n_complete(airquality$Ozone)

Return a vector of the number of complete values in each row

Description

Substitute for rowSums(!is.na(data)) but it also checks if input is NULL or is a dataframe

Usage

n_complete_row(data)

Arguments

data

a dataframe

Value

numeric vector of the number of complete values in each row

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

n_complete_row(airquality)

Return the number of missing values

Description

Substitute for sum(is.na(data))

Usage

n_miss(x)

Arguments

x

a vector

Value

numeric the number of missing values

Examples

n_miss(airquality)
n_miss(airquality$Ozone)

Return a vector of the number of missing values in each row

Description

Substitute for rowSums(is.na(data)), but it also checks if input is NULL or is a dataframe

Usage

n_miss_row(data)

Arguments

data

a dataframe

Value

numeric vector of the number of missing values in each row

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

n_miss_row(airquality)

The number of variables with complete values

Description

This function calculates the number of variables that contain a complete value

Usage

n_var_complete(data)

n_case_complete(data)

Arguments

data

data.frame

Value

integer number of complete values

See Also

n_var_miss()

Examples

# how many variables contain complete values?
n_var_complete(airquality)
n_case_complete(airquality)

The number of variables or cases with missing values

Description

This function calculates the number of variables or cases that contain a missing value

Usage

n_var_miss(data)

n_case_miss(data)

Arguments

data

data.frame

Value

integer, number of missings

See Also

n_var_complete()

Examples

# how many variables contain missing values?
n_var_miss(airquality)
n_case_miss(airquality)

Convert data into nabular form by binding shade to it

Description

Binding a shadow matrix to a regular dataframe converts it into nabular data, which makes it easier to visualise and work with missing data.

Usage

nabular(data, only_miss = FALSE, ...)

Arguments

data

a dataframe

only_miss

logical - if FALSE (default) it will bind a dataframe with all of the variables duplicated with their shadow. Setting this to TRUE will bind variables only those variables that contain missing values. See the examples for more details.

...

extra options to pass to recode_shadow() - a work in progress.

Value

data with the added variable shifted and the suffix ⁠_NA⁠

See Also

bind_shadow()

Examples

aq_nab <- nabular(airquality)
aq_s <- bind_shadow(airquality)

all.equal(aq_nab, aq_s)

naniar: Data Structures, Summaries, and Visualisations for Missing Data

Description

naniar is a package to make it easier to summarise and handle missing values in R. It strives to do this in a way that is as consistent with tidyverse principles as possible. The work is fully discussed at Tierney & Cook (2023) doi:10.18637/jss.v105.i07.

Author(s)

Maintainer: Nicholas Tierney [email protected] (ORCID)

Authors:

Other contributors:

See Also

Useful links:


West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997.

Description

Real-time data from moored ocean buoys for improved detection, understanding and prediction of El Ni'o and La Ni'a. The data is collected by the Tropical Atmosphere Ocean project (https://www.pmel.noaa.gov/gtmba/pmel-theme/pacific-ocean-tao).

Usage

data(oceanbuoys)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 736 rows and 8 columns.

Details

Format: a data frame with 736 observations on the following 8 variables.

year

A numeric with levels 1993 1997.

latitude

A numeric with levels -5 -2 0.

longitude

A numeric with levels -110 -95.

sea_temp_c

Sea surface temperature(degree Celsius), measured by the TAO buoys at one meter below the surface.

air_temp_c

Air temperature(degree Celsius), measured by the TAO buoys three meters above the sea surface.

humidity

Relative humidity(%), measured by the TAO buoys 3 meters above the sea surface.

wind_ew

The East-West wind vector components(M/s). TAO buoys measure the wind speed and direction four meters above the sea surface. If it is positive, the East-West component of the wind is blowing towards the East. If it is negative, this component is blowing towards the West.

wind_ns

The North-South wind vector components(M/s). TAO buoys measure the wind speed and direction four meters above the sea surface. If it is positive, the North-South component of the wind is blowing towards the North. If it is negative, this component is blowing towards the South.

Source

https://www.pmel.noaa.gov/tao/drupal/disdel/

See Also

library(MissingDataGUI) (data named "tao")

Examples

vis_miss(oceanbuoys)

# Look at the missingness in the variables
miss_var_summary(oceanbuoys)
## Not run: 
# Look at the missingness in air temperature and humidity
library(ggplot2)
p <-
ggplot(oceanbuoys,
       aes(x = air_temp_c,
           y = humidity)) +
     geom_miss_point()

 p

 # for each year?
 p + facet_wrap(~year)

 # this shows that there are more missing values in humidity in 1993, and
 # more air temperature missing values in 1997

 # see more examples in the vignette, "getting started with naniar".

## End(Not run)

Return the percent of complete values

Description

The complement to pct_miss

Usage

pct_complete(x)

Arguments

x

vector or data.frame

Value

numeric percent of complete values

Examples

pct_complete(airquality)
pct_complete(airquality$Ozone)

Return the percent of missing values

Description

This is shorthand for mean(is.na(x)) * 100

Usage

pct_miss(x)

Arguments

x

vector or data.frame

Value

numeric the percent of missing values in x

Examples

pct_miss(airquality)
pct_miss(airquality$Ozone)

Percentage of cases that contain a missing or complete values.

Description

Calculate the percentage of cases (rows) that contain a missing or complete value.

Usage

pct_miss_case(data)

pct_complete_case(data)

Arguments

data

a dataframe

Value

numeric the percentage of cases that contain a missing or complete value

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

pct_miss_case(airquality)
pct_complete_case(airquality)

Percentage of variables containing missings or complete values

Description

Calculate the percentage of variables that contain a single missing or complete value.

Usage

pct_miss_var(data)

pct_complete_var(data)

Arguments

data

a dataframe

Value

numeric the percent of variables that contain missing or complete data

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

prop_miss_var(airquality)
prop_complete_var(airquality)

Pedestrian count information around Melbourne for 2016

Description

This dataset contains hourly counts of pedestrians from 4 sensors around Melbourne: Birrarung Marr, Bourke Street Mall, Flagstaff station, and Spencer St-Collins St (south), recorded from January 1st 2016 at 00:00:00 to December 31st 2016 at 23:00:00. The data is made free and publicly available from https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/

Usage

data(pedestrian)

Format

A tibble with 37,700 rows and 9 variables:

hourly_counts

(integer) the number of pedestrians counted at that sensor at that time

date_time

(POSIXct, POSIXt) The time that the count was taken

year

(integer) Year of record

month

(factor) Month of record as an ordered factor (1 = January, 12 = December)

month_day

(integer) Full day of the month

week_day

(factor) Full day of the week as an ordered factor (1 = Sunday, 7 = Saturday)

hour

(integer) The hour of the day in 24 hour format

sensor_id

(integer) the id of the sensor

sensor_name

(character) the full name of the sensor

Source

https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/

Examples

# explore the missingness with vis_miss

vis_miss(pedestrian)

# Look at the missingness in the variables
miss_var_summary(pedestrian)

## Not run: 
# There is only missingness in hourly_counts
# Look at the missingness over a rolling window
library(ggplot2)
gg_miss_span(pedestrian, hourly_counts, span_every = 3000)

## End(Not run)

Return the proportion of complete values

Description

The complement to prop_miss

Usage

prop_complete(x)

Arguments

x

vector or data.frame

Value

numeric proportion of complete values

Examples

prop_complete(airquality)
prop_complete(airquality$Ozone)

Return a vector of the proportion of missing values in each row

Description

Substitute for rowMeans(!is.na(data)), but it also checks if input is NULL or is a dataframe

Usage

prop_complete_row(data)

Arguments

data

a dataframe

Value

numeric vector of the proportion of missing values in each row

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

prop_complete_row(airquality)

Return the proportion of missing values

Description

This is shorthand for mean(is.na(x))

Usage

prop_miss(x)

Arguments

x

vector or data.frame

Value

numeric the proportion of missing values in x

Examples

prop_miss(airquality)
prop_miss(airquality$Ozone)

Return a vector of the proportion of missing values in each row

Description

Substitute for rowMeans(is.na(data)), but it also checks if input is NULL or is a dataframe

Usage

prop_miss_row(data)

Arguments

data

a dataframe

Value

numeric vector of the proportion of missing values in each row

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

prop_miss_row(airquality)

Proportion of cases that contain a missing or complete values.

Description

Calculate the proportion of cases (rows) that contain missing or complete values.

Usage

prop_miss_case(data)

prop_complete_case(data)

Arguments

data

a dataframe

Value

numeric the proportion of cases that contain a missing or complete value

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

prop_miss_case(airquality)
prop_complete_case(airquality)

Proportion of variables containing missings or complete values

Description

Calculate the proportion of variables that contain a single missing or complete values.

Usage

prop_miss_var(data)

prop_complete_var(data)

Arguments

data

a dataframe

Value

numeric the proportion of variables that contain missing or complete data

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table()

Examples

prop_miss_var(airquality)
prop_complete_var(airquality)

Add special missing values to the shadow matrix

Description

It can be useful to add special missing values, naniar supports this with the recode_shadow function.

Usage

recode_shadow(data, ...)

## S3 method for class 'data.frame'
recode_shadow(data, ...)

## S3 method for class 'grouped_df'
recode_shadow(data, ...)

Arguments

data

data.frame

...

A sequence of two-sided formulas as in dplyr::case_when, but when a wrapper function .where written around it.

Value

a dataframe with altered shadows

Examples

df <- tibble::tribble(
~wind, ~temp,
-99,    45,
68,    NA,
72,    25
)

dfs <- bind_shadow(df)

dfs

recode_shadow(dfs, temp = .where(wind == -99 ~ "bananas"))

recode_shadow(dfs,
              temp = .where(wind == -99 ~ "bananas")) %>%
recode_shadow(wind = .where(wind == -99 ~ "apples"))

Replace NA value with provided value

Description

This function helps you replace NA values with a single provided value. This can be classed as a kind of imputation, and is powered by impute_fixed(). However, we would generally recommend to impute using other model based approaches. See the simputation package, for example simputation::impute_lm(). See tidyr::replace_na() for a slightly different approach, dplyr::coalesce() for replacing NAs with values from other vectors, and dplyr::na_if() to replace specified values with NA.

Usage

replace_na_with(x, value)

Arguments

x

vector

value

value to replace

Value

vector with replaced values

Examples

library(naniar)
x <- c(1:5, NA, NA, NA)
x
replace_na_with(x, 0L)
replace_na_with(x, "unknown")

library(dplyr)
dat <- tibble(
  ones = c(NA,1,1),
  twos = c(NA,NA, 2),
  threes = c(NA, NA, NA)
)

dat

dat %>%
  mutate(
    ones = replace_na_with(ones, 0),
    twos = replace_na_with(twos, -99),
    threes = replace_na_with(threes, "unknowns")
  )

dat %>%
  mutate(
    across(
      everything(),
      \(x) replace_na_with(x, -99)
    )
  )

Replace values with missings

Description

This function is Defunct, please see replace_with_na().

Usage

replace_to_na(...)

Arguments

...

additional arguments for methods.

Value

values replaced by NA


Replace values with missings

Description

Specify variables and their values that you want to convert to missing values. This is a complement to tidyr::replace_na.

Usage

replace_with_na(data, replace = list(), ...)

Arguments

data

A data.frame

replace

A named list given the NA to replace values for each column

...

additional arguments for methods. Currently unused

Value

Dataframe with values replaced by NA.

See Also

replace_with_na() replace_with_na_all() replace_with_na_at() replace_with_na_if()

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                         1,   "A",   -100,
                         3,   "N/A", -99,
                         NA,  NA,    -98,
                         -99, "E",   -101,
                         -98, "F",   -1)

replace_with_na(dat_ms,
               replace = list(x = -99))

replace_with_na(dat_ms,
             replace = list(x = c(-99, -98)))

replace_with_na(dat_ms,
             replace = list(x = c(-99, -98),
                          y = c("N/A"),
                          z = c(-101)))

Replace all values with NA where a certain condition is met

Description

This function takes a dataframe and replaces all values that meet the condition specified as an NA value, following a special syntax.

Usage

replace_with_na_all(data, condition)

Arguments

data

A dataframe

condition

A condition required to be TRUE to set NA. Here, the condition is specified with a formula, following the syntax: ⁠~.x {condition}⁠. For example, writing ~.x < 20 would mean "where a variable value is less than 20, replace with NA".

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                          1,   "A",   -100,
                          3,   "N/A", -99,
                          NA,  NA,    -98,
                          -99, "E",   -101,
                          -98, "F",   -1)

dat_ms
#replace all instances of -99 with NA
replace_with_na_all(data = dat_ms,
                    condition = ~.x == -99)

# replace all instances of -99 or -98, or "N/A" with NA
replace_with_na_all(dat_ms,
                    condition = ~.x %in% c(-99, -98, "N/A"))
# replace all instances of common na strings
replace_with_na_all(dat_ms,
                    condition = ~.x %in% common_na_strings)

# where works with functions
replace_with_na_all(airquality, ~ sqrt(.x) < 5)

Replace specified variables with NA where a certain condition is met

Description

Replace specified variables with NA where a certain condition is met

Usage

replace_with_na_at(data, .vars, condition)

Arguments

data

dataframe

.vars

A character string of variables to replace with NA values

condition

A condition required to be TRUE to set NA. Here, the condition is specified with a formula, following the syntax: ⁠~.x {condition}⁠. For example, writing ~.x < 20 would mean "where a variable value is less than 20, replace with NA".

Value

a dataframe

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                          1,   "A",   -100,
                          3,   "N/A", -99,
                          NA,  NA,    -98,
                          -99, "E",   -101,
                          -98, "F",   -1)

dat_ms

replace_with_na_at(data = dat_ms,
                 .vars = "x",
                 condition = ~.x == -99)

replace_with_na_at(data = dat_ms,
                 .vars = c("x","z"),
                 condition = ~.x == -99)

# replace using values in common_na_strings
replace_with_na_at(data = dat_ms,
                 .vars = c("x","z"),
                 condition = ~.x %in% common_na_strings)

Replace values with NA based on some condition, for variables that meet some predicate

Description

Replace values with NA based on some condition, for variables that meet some predicate

Usage

replace_with_na_if(data, .predicate, condition)

Arguments

data

Dataframe

.predicate

A predicate function to be applied to the columns or a logical vector.

condition

A condition required to be TRUE to set NA. Here, the condition is specified with a formula, following the syntax: ⁠~.x {condition}⁠. For example, writing ~.x < 20 would mean "where a variable value is less than 20, replace with NA".

Value

Dataframe

Examples

dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                          1,   "A",   -100,
                          3,   "N/A", -99,
                          NA,  NA,    -98,
                          -99, "E",   -101,
                          -98, "F",   -1)

dat_ms

replace_with_na_if(data = dat_ms,
                 .predicate = is.character,
                 condition = ~.x == "N/A")
replace_with_na_if(data = dat_ms,
                   .predicate = is.character,
                   condition = ~.x %in% common_na_strings)

replace_with_na(dat_ms,
              to_na = list(x = c(-99, -98),
                           y = c("N/A"),
                           z = c(-101)))

The Behavioral Risk Factor Surveillance System (BRFSS) Survey Data, 2009.

Description

The data is a subset of the 2009 survey from BRFSS, an ongoing data collection program designed to measure behavioral risk factors for the adult population (18 years of age or older) living in households.

Usage

data(riskfactors)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 245 rows and 34 columns.

Source

https://www.cdc.gov/brfss/annual_data/annual_2009.htm

See Also

the codebook: https://www.cdc.gov/brfss/annual_data/annual_2009.htm

Format: a data frame with 245 observations on the following 34 variables.

state

A factor with 52 levels. The labels and states corresponding to the labels are as follows: 1:Alabama, 2:Alaska, 4:Arizona, 5:Arkansas, 6:California,8:Colorado, 9:Connecticut, 10:Delaware, 11:District of Columbia,12:Florida, 13:Georgia, 15:Hawaii, 16:Idaho, 1 :Illinois,18:Indiana, 19:Iowa, 20:Kansas, 21:Kentucky, 22:Louisiana,23:Maine, 24:Maryland, 25:Massachusetts, 26:Michigan,27:Minnesota, 28:Mississippi, 2:Missouri, 30:Montana,31:Nebraska, 32:Nevada, 33:New Hampshire, 34:New Jersey, 35:NewMexico, 36:New York, 37:North Carolina, 38:North Dakota, 39:Ohio,40:Oklahoma, 41:Oregon, 42:Pennsylvania, 44:Rhode Island, 45:SouthCarolina, 46:South Dakota, 47:Tennessee, 48:Texas, 49:Utah, 50:Vermont, 51:Virginia, 53:Washington, 54:West Virginia,55:Wisconsin, 56:Wyoming, 66:Guam, 72:Puerto Rico, 78:Virgin Islands

sex

A factor with levels Male Female.

age

A numeric vector from 7 to 97.

weight_lbs

The weight without shoes in pounds.

height_inch

The weight without shoes in inches.

bmi

Body Mass Index (BMI). Computed by weight in Kilogram /(height in Meters * height in Meters). Missing if any of weight or height is missing.

marital

A factor with levels Married Divorced Widowed Separated NeverMarried UnmarriedCouple.

pregnant

Whether pregnant now with two levels Yes and No.

children

A numeric vector giving the number of children less than 18 years of age in household.

education

A factor with the education levels 1 2 3 4 5 6 as 1: Never attended school or only kindergarten; 2: Grades 1 through 8 (Elementary); 3: Grades 9 through 11 (Some high school); 4: Grade 12 or GED (High school graduate); 5: College 1 year to 3 years (Some college or technical school); 6: College 4 years or more (College graduate).

employment

A factor showing the employment status with levels 1 2 3 4 5 7 8. The labels mean – 1: Employed for wages; 2: Self-employed; 3: Out of work for more than 1 year; 4: Out of work for less that 1 year; 5: A homemaker; 6: A student; 7:Retired; 8: Unable to work.

income

The annual household income from all sources with levels ⁠<10k⁠ ⁠10-15k⁠ ⁠15-20k⁠ ⁠20-25k⁠ ⁠25-35k⁠ ⁠35-50k⁠ ⁠50-75k⁠ ⁠>75k⁠ Dontknow Refused.

veteran

A factor with levels 1 2 3 4 5. The question for this variable is: Have you ever served on active duty in the United States Armed Forces, either in the regular military or in a National Guard or military reserve unit? Active duty does not include training for the Reserves or National Guard, but DOES include activation, for example, for the Persian Gulf War. And the labels are meaning: 1: Yes, now on active duty; 2: Yes, on active duty during the last 12 months, but not now; 3: Yes, on active duty in the past, but not during the last 12 months; 4: No, training for Reserves or National Guard only; 5: No, never served in the military.

hispanic

A factor with levels Yes No corresponding to the question: are you Hispanic or Latino?

health_general

Answer to question "in general your health is" with levels Excellent VeryGood Good Fair Poor Refused.

health_physical

The number of days during the last 30 days that the respondent's physical health was not good. -7 is for "Don't know/Not sure", and -9 is for "Refused".

health_mental

The number of days during the last 30 days that the respondent's mental health was not good. -7 is for "Don't know/Not sure", and -9 is for "Refused".

health_poor

The number of days during the last 30 days that poor physical or mental health keep the respondent from doing usual activities, such as self-care, work, or recreation. -7 is for "Don't know/Not sure", and -9 is for "Refused".

health_cover

Whether having any kind of health care coverage, including health insurance, prepaid plans such as HMOs, or government plans such as Medicare. The answer has two levels: Yes and No.

provide_care

Whether providing any such care or assistance to a friend or family member during the past month, with levels Yes and No.

activity_limited

Whether being limited in any way in any activities because of physical, mental, or emotional problems, with levels Yes and No.

drink_any

Whether having had at least one drink of any alcoholic beverage such as beer, wine, a malt beverage or liquor during the past 30 days, with levels Yes and No.

drink_days

The number of days during the past 30 days that the respondent had at least one drink of any alcoholic beverage. -7 is for "Don't know/Not sure", and -9 is for "Refused".

drink_avg

The number of drinks on the average the respondent had on the days when he/she drank, during the past 30 days. -7 is for "Don't know/Not sure", and -9 is for "Refused".

smoke_100

Whether having smoked at least 100 cigarettes in the entire life, with levels Yes and No.

smoke_days

The frequency of days now smoking, with levels Everyday Somedays and NotAtAll(not at all).

smoke_stop

Whether having stopped smoking for one day or longer during the past 12 months because the respondent was trying to quit smoking, with levels Yes and No.

smoke_last

A factor with levels 3 4 5 6 7 8 corresponding to the question: how long has it been since last smoking cigarettes regularly? The labels mean: 3: Within the past 6 months (3 months but less than 6 months ago); 4: Within the past year (6 months but less than 1 year ago); 5: Within the past 5 years (1 year but less than 5 years ago); 6: Within the past 10 years (5 years but less than 10 years ago); 7: 10 years or more; 8: Never smoked regularly.

diet_fruit

The number of fruit the respondent eat every year, not counting juice. -7 is for "Don't know/Not sure", and -9 is for "Refused".

diet_salad

The number of servings of green salad the respondent eat every year. -7 is for "Don't know/Not sure", and -9 is for "Refused".

diet_potato

The number of servings of potatoes, not including french fries, fried potatoes, or potato chips, that the respondent eat every year. -7 is for "Don't know/Not sure", and -9 is for "Refused".

diet_carrot

The number of carrots the respondent eat every year. -7 is for "Don't know/Not sure", and -9 is for "Refused".

diet_vegetable

The number of servings of vegetables the respondent eat every year, not counting carrots, potatoes, or salad. -7 is for "Don't know/Not sure", and -9 is for "Refused".

diet_juice

The number of fruit juices such as orange, grapefruit, or tomato that the respondent drink every year. -7 is for "Don't know/Not sure", and -9 is for "Refused".

library(MissingDataGUI) (named brfss)

Examples

vis_miss(riskfactors)

# Look at the missingness in the variables
miss_var_summary(riskfactors)

# and now as a plot
gg_miss_var(riskfactors)

## Not run: 
# Look at the missingness in bmi and poor health
library(ggplot2)
p <-
ggplot(riskfactors,
       aes(x = health_poor,
           y = bmi)) +
     geom_miss_point()

 p

 # for each sex?
 p + facet_wrap(~sex)
 # for each education bracket?
 p + facet_wrap(~education)

## End(Not run)

Scoped variants of impute_mean

Description

impute_mean imputes the mean for a vector. To get it to work on all variables, use impute_mean_all. To only impute variables that satisfy a specific condition, use the scoped variants, impute_below_at, and impute_below_if. To use ⁠_at⁠ effectively, you must know that ⁠_at`` affects variables selected with a character vector, or with ⁠vars()'.

Usage

impute_mean_all(.tbl)

impute_mean_at(.tbl, .vars)

impute_mean_if(.tbl, .predicate)

Arguments

.tbl

a data.frame

.vars

variables to impute

.predicate

variables to impute

Details

[Superseded]

Value

an dataset with values imputed

Examples

# select variables starting with a particular string.
impute_mean_all(airquality)

impute_mean_at(airquality,
               .vars = c("Ozone", "Solar.R"))

## Not run: 
library(dplyr)
impute_mean_at(airquality,
                .vars = vars(Ozone))

impute_mean_if(airquality,
                .predicate = is.numeric)

library(ggplot2)
airquality %>%
  bind_shadow() %>%
  impute_mean_all() %>%
  add_label_shadow() %>%
  ggplot(aes(x = Ozone,
             y = Solar.R,
             colour = any_missing)) +
         geom_point()

## End(Not run)

Scoped variants of impute_median

Description

impute_median imputes the median for a vector. To only impute many variables at once, we recommend that you use the across function workflow, shown in the examples for impute_median(). You can use the scoped variants, impute_median_all.impute_below_at, and impute_below_if to impute all, some, or just those variables meeting some condition, respectively. To use ⁠_at⁠ effectively, you must know that ⁠_at⁠ affects variables selected with a character vector, or with vars().

Usage

impute_median_all(.tbl)

impute_median_at(.tbl, .vars)

impute_median_if(.tbl, .predicate)

Arguments

.tbl

a data.frame

.vars

variables to impute

.predicate

variables to impute

Details

[Superseded]

Value

an dataset with values imputed

Examples

# select variables starting with a particular string.
impute_median_all(airquality)

impute_median_at(airquality,
               .vars = c("Ozone", "Solar.R"))
library(dplyr)
impute_median_at(airquality,
                .vars = vars(Ozone))

impute_median_if(airquality,
                .predicate = is.numeric)

library(ggplot2)
airquality %>%
  bind_shadow() %>%
  impute_median_all() %>%
  add_label_shadow() %>%
  ggplot(aes(x = Ozone,
             y = Solar.R,
             colour = any_missing)) +
         geom_point()

Set a proportion or number of missing values

Description

Set a proportion or number of missing values

Usage

set_prop_miss(x, prop = 0.1)

set_n_miss(x, n = 1)

Arguments

x

vector of values to set missing

prop

proportion of values between 0 and 1 to set as missing

n

number of values to set missing

Value

vector with missing values added

Examples

vec <- rnorm(5)
set_prop_miss(vec, 0.2)
set_prop_miss(vec, 0.4)
set_n_miss(vec, 1)
set_n_miss(vec, 4)

Create new levels of missing

Description

Returns (at least) factors of !NA and NA, where !NA indicates a datum that is not missing, and NA indicates missingness. It also allows you to specify some new missings, if you like. This function is what powers the factor levels in as_shadow().

Usage

shade(x, ..., extra_levels = NULL)

Arguments

x

a vector

...

additional levels of missing to add

extra_levels

extra levels you might to specify for the factor.

Examples

df <- tibble::tribble(
  ~wind, ~temp,
  -99,    45,
  68,    NA,
  72,    25
  )

shade(df$wind)

shade(df$wind, inst_fail = -99)

Reshape shadow data into a long format

Description

Once data is in nabular form, where the shadow is bound to the data, it can be useful to reshape it into a long format with the shadow columns in a separate grouping - so you have variable, value, and variable_NA and value_NA.

Usage

shadow_long(shadow_data, ..., fn_value_transform = NULL, only_main_vars = TRUE)

Arguments

shadow_data

a data.frame

...

bare name of variables that you want to focus on

fn_value_transform

function to transform the "value" column. Default is NULL, which defaults to as.character. Be aware that as.numeric may fail for some instances if it cannot coerce the value into numeric. See the examples.

only_main_vars

logical - do you want to filter down to main variables?

Value

data in long format, with columns variable, value, variable_NA, and value_NA.

Examples

aq_shadow <- nabular(airquality)

shadow_long(aq_shadow)

# then filter only on Ozone
shadow_long(aq_shadow, Ozone)

shadow_long(aq_shadow, Ozone, Solar.R)

# ensure `value` is numeric
shadow_long(aq_shadow, fn_value_transform = as.numeric)
shadow_long(aq_shadow, Ozone, Solar.R, fn_value_transform = as.numeric)

Shift missing values to facilitate missing data exploration/visualisation

Description

shadow_shift transforms missing values to facilitate visualisation, and has different behaviour for different types of variables. For numeric variables, the values are shifted to 10% below the minimum value for a given variable plus some jittered noise, to separate repeated values, so that missing values can be visualised along with the rest of the data.

Usage

shadow_shift(...)

Arguments

...

arguments to impute_below().

Details

[Deprecated]

See Also

add_shadow_shift() cast_shadow_shift() cast_shadow_shift_label()

Examples

airquality$Ozone
shadow_shift(airquality$Ozone)
## Not run: 
library(dplyr)
airquality %>%
    mutate(Ozone_shift = shadow_shift(Ozone))

## End(Not run)

stat_miss_point

Description

stat_miss_point adds a geometry for displaying missingness to geom_point

Usage

stat_miss_point(
  mapping = NULL,
  data = NULL,
  prop_below = 0.1,
  jitter = 0.05,
  geom = "point",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)

Arguments

mapping

Set of aesthetic mappings created by ggplot2::aes() or ggplot2::aes_(). If specified and inherit.aes = TRUE (the default), is combined with the default mapping at the top level of the plot. You only need to supply mapping if there isn't a mapping defined for the plot.

data

A data frame. If specified, overrides the default data frame defined at the top level of the plot.

prop_below

the degree to shift the values. The default is 0.1

jitter

the amount of jitter to add. The default is 0.05

geom

stat Override the default connection between geom_point and stat_point.

position

Position adjustment, either as a string, or the result of a call to a position adjustment function

na.rm

If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders.

...

other arguments passed on to ggplot2::layer(). There are three types of arguments you can use here:

  • Aesthetics: to set an aesthetic to a fixed value, like color = "red" or size = 3.

  • Other arguments to the layer, for example you override the default stat associated with the layer.

  • Other arguments passed on to the stat.


Unbind (remove) shadow from data, and vice versa

Description

Remove the shadow variables (which end in ⁠_NA⁠) from the data, or vice versa. This will also remove the nabular class from the data.

Usage

unbind_shadow(data)

unbind_data(data)

Arguments

data

data.frame containing shadow columns (created by bind_shadow())

Value

data.frame without shadow columns if using unbind_shadow(), or without the original data, if using unbind_data().

Examples

# bind shadow columns
aq_sh <- bind_shadow(airquality)

# print data
aq_sh

# remove shadow columns
unbind_shadow(aq_sh)

# remove data
unbind_data(aq_sh)

# errors when you don't use data with shadows
## Not run: 
 unbind_data(airquality)
 unbind_shadow(airquality)

## End(Not run)

Split a call into two components with a useful verb name

Description

This function is used inside recode_shadow to help evaluate the formula call effectively. .where is a special function designed for use in recode_shadow, and you shouldn't use it outside of it

Usage

.where(...)

Arguments

...

case_when style formula

Value

a list of "condition" and "suffix" arguments

Examples

## Not run: 
df <- tibble::tribble(
~wind, ~temp,
-99,    45,
68,    NA,
72,    25
)

dfs <- bind_shadow(df)

recode_shadow(dfs,
              temp = .where(wind == -99 ~ "bananas"))


## End(Not run)

Which rows and cols contain missings?

Description

Internal function that is short for which(is.na(x), arr.ind = TRUE). Creates array index locations of missing values in a dataframe.

Usage

where_na(x)

Arguments

x

a dataframe

Value

a matrix with columns "row" and "col", which refer to the row and column that identify the position of a missing value in a dataframe

See Also

which_na()

Examples

where_na(airquality)
where_na(oceanbuoys$sea_temp_c)

Which variables are shades?

Description

This function tells us which variables contain shade information

Usage

which_are_shade(.tbl)

Arguments

.tbl

a data.frame or tbl

Value

numeric - which column numbers contain shade information

Examples

df_shadow <- bind_shadow(airquality)

which_are_shade(df_shadow)

Which elements contain missings?

Description

Equivalent to which(is.na()) - returns integer locations of missing values.

Usage

which_na(x)

Arguments

x

a dataframe

Value

integer locations of missing values.

See Also

where_na()

Examples

which_na(airquality)