Package: brolgar 1.0.1
brolgar: Browse Over Longitudinal Data Graphically and Analytically in R
Provides a framework of tools to summarise, visualise, and explore longitudinal data. It builds upon the tidy time series data frames used in the 'tsibble' package, and is designed to integrate within the 'tidyverse', and 'tidyverts' (for time series) ecosystems. The methods implemented include calculating features for understanding longitudinal data, including calculating summary statistics such as quantiles, medians, and numeric ranges, sampling individual series, identifying individual series representative of a group, and extending the facet system in 'ggplot2' to facilitate exploration of samples of data. These methods are fully described in the paper "brolgar: An R package to Browse Over Longitudinal Data Graphically and Analytically in R", Nicholas Tierney, Dianne Cook, Tania Prvan (2020) <doi:10.32614/RJ-2022-023>.
Authors:
brolgar_1.0.1.tar.gz
brolgar_1.0.1.zip(r-4.5)brolgar_1.0.1.zip(r-4.4)brolgar_1.0.1.zip(r-4.3)
brolgar_1.0.1.tgz(r-4.4-any)brolgar_1.0.1.tgz(r-4.3-any)
brolgar_1.0.1.tar.gz(r-4.5-noble)brolgar_1.0.1.tar.gz(r-4.4-noble)
brolgar_1.0.1.tgz(r-4.4-emscripten)brolgar_1.0.1.tgz(r-4.3-emscripten)
brolgar.pdf |brolgar.html✨
brolgar/json (API)
NEWS
# Install 'brolgar' in R: |
install.packages('brolgar', repos = c('https://njtierney.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/njtierney/brolgar/issues
Last updated 7 months agofrom:2657c8ece0. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win | OK | Nov 06 2024 |
R-4.5-linux | OK | Nov 06 2024 |
R-4.4-win | OK | Nov 06 2024 |
R-4.4-mac | OK | Nov 06 2024 |
R-4.3-win | OK | Nov 06 2024 |
R-4.3-mac | OK | Nov 06 2024 |
Exports:%>%add_key_slopeadd_key_slope.defaultadd_n_obsas_tsibbleb_diff_iqrb_diff_maxb_diff_meanb_diff_medianb_diff_minb_diff_q25b_diff_q75b_diff_sdb_diff_varb_iqrb_madb_maxb_meanb_medianb_minb_q25b_q75b_rangeb_range_diffb_sdb_vardecreasingfacet_samplefacet_stratafeat_brolgarfeat_diff_summaryfeat_five_numfeat_monotonicfeat_rangesfeat_spreadfeat_three_numfeaturesfeatures_allfeatures_atfeatures_ifincreasingindex_regularindex_summarykey_slopekeys_nearl_five_numl_three_nummonotonicn_keysn_obsnear_betweennear_middlenear_quantilenearest_lglnearest_qt_lglsample_frac_keyssample_n_keysstratify_keysunvarying
Dependencies:anytimeBHclicolorspacecpp11digestdistributionaldplyrellipsisfabletoolsfansifarvergenericsggdistggplot2gluegtableisobandlabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmenumDerivpillarpkgconfigprogressrpurrrquadprogR6RColorBrewerRcpprlangscalesstringistringrtibbletidyrtidyselecttimechangetsibbleutf8vctrsviridisLitewithr
Exploratory Modelling
Rendered fromexploratory-modelling.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2023-02-06
Started: 2019-08-13
Finding Features in Data
Rendered fromfinding-features.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2023-02-06
Started: 2019-08-13
Getting Started
Rendered fromgetting-started.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2020-12-15
Started: 2019-07-19
Identify Interesting Observations
Rendered fromid-interesting-obs.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2023-02-06
Started: 2019-08-13
Longitudinal Data Structures
Rendered fromlongitudinal-data-structures.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2023-02-06
Started: 2019-07-11
Using brolgar to understand Mixed Effects Models
Rendered frommixed-effects-models.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2023-02-06
Started: 2019-09-08
Visualisation Gallery
Rendered fromvisualisation-gallery.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2023-02-06
Started: 2019-04-29